Originally posted by Ferric Toes
View Post
Announcement
Collapse
No announcement yet.
Vallon VMH3CS Mine Detector
Collapse
X
-
A quick bit of Googling reveals that the wall thickness is commonly 0.097mm to 0.12mm, though clearly it's going to vary a bit around the world. It's not unreasonable to assume that the development of better alloys will result in thinner walls.
I understand the problem with higher-strength alloys is that they don't extrude well, they crack, etc. So the search is on for a soft hard malleable strong alloy......
Comment
-
Thickness of the sample makes a big difference.
I found that a square of 1in wide copper tape used in EMC applications gave the same conductivity reading as a 1in square aluminium off a drink can. The copper tape is a bit thinner at 0.05mm and I have a whole roll of the stuff which is easy to cut up. I cut five identical 1in squares and first measuring one, I then stuck the next one on top, and so on, until five were stuck together. The tape is adhesive backed. Results with the Hocking probe are as follows.
1. 7.67% IACS... 0.05mm thickness
2. 27.00........... 0.10
3. 45.50........... 0.15
4. 53.40........... 0.20
5. 53.70........... 0.25
Adding more caused little change. If I get time over the next few days, I will plot the log/lin decay of similar samples. Also interesting would be to do the same exercise with 10mm squares of copper tape.
Eric.
Comment
-
Originally posted by Ferric Toes View PostI found that a square of 1in wide copper tape used in EMC applications gave the same conductivity reading as a 1in square aluminium off a drink can. The copper tape is a bit thinner at 0.05mm and I have a whole roll of the stuff which is easy to cut up. I cut five identical 1in squares and first measuring one, I then stuck the next one on top, and so on, until five were stuck together. The tape is adhesive backed. Results with the Hocking probe are as follows.
1. 7.67% IACS... 0.05mm thickness
2. 27.00........... 0.10
3. 45.50........... 0.15
4. 53.40........... 0.20
5. 53.70........... 0.25
Adding more caused little change. If I get time over the next few days, I will plot the log/lin decay of similar samples. Also interesting would be to do the same exercise with 10mm squares of copper tape.
Eric.
Does the adhesive between layers affect the conductivity and eddy currents similar to laminations in a transformer?
Thank you and have a good day,
Chet
Comment
-
Originally posted by Chet View PostHi Eric
Does the adhesive between layers affect the conductivity and eddy currents similar to laminations in a transformer?
Chet
Comment
-
Copper foil tests
Following the previous tests on copper foil and the fact that 5 layers brought the IACS readings to a respectable level, I was interested to see now how small a piece the Vallon would detect. I cut a five layer sandwich until is was down to 4mm x 4mm. This I could still detect at 3 - 4in. I then plotted the decay curve which came out as follows. The delay readings are from TXoff to start of first sample and were done on a viscosity meter usually to measure soil samples. The delays are micro controlled and accurate to a few nS. I got a max reading of 850 arbitrary units at 10uS and which falls to 245 at 15uS and so on.
Personally, I am quite happy with this level of small object sensitivity (4 x 4mm x 0.25mm). Even for gold nugget hunting, as chasing smaller pieces is not of great interest. I believe the Vallon would really shine on a Civil War battle site as bullets and miniballs are readily detectable at good ranges. I will post some figures in due course.
Comment
-
Originally posted by Ferric Toes View PostFollowing the previous tests on copper foil and the fact that 5 layers brought the IACS readings to a respectable level, I was interested to see now how small a piece the Vallon would detect. I cut a five layer sandwich until is was down to 4mm x 4mm. This I could still detect at 3 - 4in. I then plotted the decay curve which came out as follows. The delay readings are from TXoff to start of first sample and were done on a viscosity meter usually to measure soil samples. The delays are micro controlled and accurate to a few nS. I got a max reading of 850 arbitrary units at 10uS and which falls to 245 at 15uS and so on.
[ATTACH]36321[/ATTACH]
Personally, I am quite happy with this level of small object sensitivity (4 x 4mm x 0.25mm). Even for gold nugget hunting, as chasing smaller pieces is not of great interest. I believe the Vallon would really shine on a Civil War battle site as bullets and miniballs are readily detectable at good ranges. I will post some figures in due course.
Wondering why you charted linear scales. Do you see something on the linear chart that makes it better?
Comment
-
Originally posted by green View Post
Wondering why you charted linear scales. Do you see something on the linear chart that makes it better?
Having said that, a linear scale gives a good visual idea of the scale of the difference in signal amplitude that the preamp sees at later delays. I will try and fix the computer error so that we are comparing like for like.
I did advocate the use of wide band log preamps some years back but other than a few experiments, didn't do anything further about it. By differentiating the linear slope you get a constant amplitude that gets noisier with time for non-ferrous. Iron still looks like an exponential.
Comment
-
Originally posted by Ferric Toes View PostSorted the problem. Here is the log/linear plot. [ATTACH]36329[/ATTACH]
Comment
-
The lin. vs log. scale is tricky to use. You can't interpolate accurately on the log scale, so don't try. The linear scale can easily be interpolated, if need be. The best way is to choose two points on the straight line that cross through convenient points on the chart. Choose them a decent distance apart for accuracy.
Example, from Erics chart: V=90 at t=19.5 us, and V=8 at t=30.5 us.
Your basic decay equation is:
V/Vo = e^(-t / RC) for the more familiar R & C charge/discharge circuit. RC = time-constant, (which also = L/R for inductive decay).
So in this case: V/Vo = 8/90, and t = (30.5 - 19.5) = 11 us.
Take natural ( Naperian) logs of each side:
ln(8/90) = -11 us / (time-constant)
or, re-arranging:
time-constant = (-11 x 10^-6) / ln (8/90)
which I calculate as 4.54 microsecs for this test object.
Comment
-
Originally posted by Skippy View PostThe lin. vs log. scale is tricky to use. You can't interpolate accurately on the log scale, so don't try. The linear scale can easily be interpolated, if need be. The best way is to choose two points on the straight line that cross through convenient points on the chart. Choose them a decent distance apart for accuracy.
Example, from Erics chart: V=90 at t=19.5 us, and V=8 at t=30.5 us.
Your basic decay equation is:
V/Vo = e^(-t / RC) for the more familiar R & C charge/discharge circuit. RC = time-constant, (which also = L/R for inductive decay).
So in this case: V/Vo = 8/90, and t = (30.5 - 19.5) = 11 us.
Take logs of each side:
ln(8/90) = -11 us / (time-constant)
or
time-constant = (-11 x 10^-6) / ln (8/90)
which I calculate as 4.54 microsecs for this test object.
Comment
-
I don't really understand your statement...
But there is something peculiar with the scaling, it looks like there's 12 steps per decade, but there's not... is that what you mean.?
Maybe Eric had better chime in here, in case there's something he's done wrong.
The pale grey lines for 10, 100, 1000 are there to indicate where those voltages are on the vertical axis, but the actual scaling of the true decade graduations are unfathomable, it looks like the decade starts at about 9, then there's 10 steps to get to 90, etc.
That's what happens when you let a computer do the work. If I'd plotted this, I wouldv'e done it on paper, with a ruler.
So...ignore my earlier readings from the chart, they are incorrect.
Based on the 'computer best fit' data that says "b = -0.22627", we can calculate -1/b as 4.42 , this is the time-constant in microsecs, as Eric has obviously entered the time figures as 10, 20 etc rather than 10 x 10^-6, 20 x 10^-6, etc.
So the targets time-constant is 4.42 microsecs.
Comment
-
Dang that's bizarre. It looks like the 'decade' is in 11 steps of about '9', starting at 93.
Change of topic: I've got hold of a number of new ally cans, standard diameter (65mm), energy-drink sized (55mm) and standard and tall height. They were all from 0.095mm to 0.105mm thickness. This makes Eric's thin-wall beverage can look unusual.
I'll try and get an IACS resistivity reading for one of them, just to see if there's any real difference to my previously posted test result, and the 'datasheet ' value.
Comment
-
Originally posted by Skippy View PostI don't really understand your statement...
But there is something peculiar with the scaling, it looks like there's 12 steps per decade, but there's not... is that what you mean.?
Maybe Eric had better chime in here, in case there's something he's done wrong.
The pale grey lines for 10, 100, 1000 are there to indicate where those voltages are on the vertical axis, but the actual scaling of the true decade graduations are unfathomable, it looks like the decade starts at about 9, then there's 10 steps to get to 90, etc.
That's what happens when you let a computer do the work. If I'd plotted this, I wouldv'e done it on paper, with a ruler.
So...ignore my earlier readings from the chart, they are incorrect.
Based on the 'computer best fit' data that says "b = -0.22627", we can calculate -1/b as 4.42 , this is the time-constant in microsecs, as Eric has obviously entered the time figures as 10, 20 etc rather than 10 x 10^-6, 20 x 10^-6, etc.
So the targets time-constant is 4.42 microsecs.
Comment
Comment