And what good could they be anyway?
And what the heck are they?
And can they be processed in a PIC?
Wavelets are mathematical functions that cut up data into different frequency components, and then study each component with a resolution matched to its scale. They have advantages over traditional Fourier methods in analyzing physical situations where the signal contains discontinuities and sharp spikes. Wavelets were developed independently in the fields of mathematics, quantum physics, electrical engineering, and seismic geology. Interchanges between these fields during the last ten years have led to many new wavelet applications such as image compression, turbulence, human vision, radar, and earthquake prediction. This paper introduces wavelets to the interested technical person outside of the digital signal processing field. I describe the history of wavelets beginning with Fourier, compare wavelet transforms with Fourier transforms, state properties and other special aspects of wavelets, and finish with some interesting applications such as image compression, musical tones, and de-noising noisy data.
http://www.amara.com/IEEEwave/IEEEwavelet.html
Welcome to this introductory tutorial on wavelet transforms. The wavelet transform is a relatively new concept (about 10 years old), but yet there are quite a few articles and books written on them. However, most of these books and articles are written by math people, for the other math people; still most of the math people don't know what the other math people are talking about (a math professor of mine made this confession). In other words, majority of the literature available on wavelet transforms are of little help, if any, to those who are new to this subject (this is my personal opinion).
http://users.rowan.edu/~polikar/WAVELETS/WTpart1.html
{Real "state of the talk"}
And what the heck are they?
And can they be processed in a PIC?
Wavelets are mathematical functions that cut up data into different frequency components, and then study each component with a resolution matched to its scale. They have advantages over traditional Fourier methods in analyzing physical situations where the signal contains discontinuities and sharp spikes. Wavelets were developed independently in the fields of mathematics, quantum physics, electrical engineering, and seismic geology. Interchanges between these fields during the last ten years have led to many new wavelet applications such as image compression, turbulence, human vision, radar, and earthquake prediction. This paper introduces wavelets to the interested technical person outside of the digital signal processing field. I describe the history of wavelets beginning with Fourier, compare wavelet transforms with Fourier transforms, state properties and other special aspects of wavelets, and finish with some interesting applications such as image compression, musical tones, and de-noising noisy data.
http://www.amara.com/IEEEwave/IEEEwavelet.html
Welcome to this introductory tutorial on wavelet transforms. The wavelet transform is a relatively new concept (about 10 years old), but yet there are quite a few articles and books written on them. However, most of these books and articles are written by math people, for the other math people; still most of the math people don't know what the other math people are talking about (a math professor of mine made this confession). In other words, majority of the literature available on wavelet transforms are of little help, if any, to those who are new to this subject (this is my personal opinion).
http://users.rowan.edu/~polikar/WAVELETS/WTpart1.html
{Real "state of the talk"}
Comment